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Abstract 

We give the conditions that the linear system ( ) ( )( )xtBtAx +=′  is converted into 
another solvable linear system under the transformation based on the 
fundamental matrix. Using our results, we show several examples of linear 
systems which we can obtain the fundamental matrix. 

1. Introduction 

Consider the linear system 

( ) ( )( ) ,xtBtAx +=′   (1.1) 

where ( )tA  and ( )tB  are continuous real nn ×  matrix functions. If both 
( )tA  and ( )tB  are constant matrices A and B respectively, then the 

fundamental matrix of (1.1) is given by ( ) .tBAe +  In particular, if A and B 

are commutative, then we have ( ) .BtAttBA eee =+  If only ( )tA  is a 
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constant matrix A, and A and ( )tB  are commutative, then the 

fundamental matrix of (1.1) is given by ( )te AtΨ  where ( )tΨ  is a 
fundamental matrix of ( ) .xtBx =′  However, if A and ( )tB  are not always 
assumed to be commutative, it is generally difficult to obtain the 
fundamental matrix of (1.1). 

By using the transformation ,yex St=  Yamamoto [4] gives the 
condition that 

( )xtAx =′   (1.2) 

is converted into another linear system ( )ytBy =′  as follows. 

Lemma 1.1. There exists a constant matrix S and a continuously 
differentiable function ( )tB  such that (1.2) is converted into ( )ytBy =′  

under the transformation ,yex St=  if and only if ( )tA  satisfies that 

( ) ( ) ( ) ( )
( ) ( )




+=

′+−=′ −

.00
,

BSA
etBeStAtSAtA StSt

 (1.3) 

From this result, we can see that, if ( )tA  satisfies (1.3) for some S and 

( ),tB  then the fundamental matrix of (1.2) is given by ( )teStΨ  where 
( )tΨ  is the fundamental matrix of ( ) .ytBy =′  Thus, we may take it that 
( )tA  is decomposed by S and ( )tB  in a sense, and the fundamental 

matrix of (1.2) is expressed by the product of Ste  and ( )tΨ  which are the 
fundamental matrices of Sxx =′  and ( )ytBy =′  respectively. Here, we 
note that S and ( )tB  are not always assumed to be commutative. 

Unfortunately, it is not easy to find S and ( )tB  for given ( ).tA  Moreover, 

even if we find such S and ( ),tB  we need the fundamental matrix of 
( )ytBy =′  in order to obtain the fundamental matrix of (1.2). Thus, 

except for the case that ( )tB  is a constant matrix, we can hardly apply 
Lemma 1.1 to concrete examples to obtain the fundamental matrix of 
(1.2). 
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In this paper, using the above idea, we decompose the linear system 
as (1.1), and intend to convert it into another solvable linear system by 
using the transformation ( )ytx Φ=  where ( )tΦ  is the fundamental 

matrix of ( ) .xtAx =′  If we can obtain the fundamental matrix ( )tΨ  of 

the converted linear system, then the fundamental matrix of (1.1) is 
expressed by ( ) ( ).tt ΨΦ  As a sufficient condition to obtain the 

fundamental matrix of the linear system, we use the following well-
known result. 

Lemma 1.2. Assume that ( )tA  satisfies that 

( ) ( ) ( ) ( ).
00

tAdssAdssAtA
tt









=








∫∫  (1.4) 

Then, the fundamental matrix of ( )xtAx =′  is given by 
( )

.0 dssAt

e∫  

In the following, we prepare a concrete matrix form of ( )tA  which 

satisfies (1.4), and gives the explicit expression of the fundamental 
matrix. And then, we derive the conditions that (1.1) is converted into the 
linear system, which satisfies (1.4). We also apply our results to several 
examples of linear systems. 

2. Main Results 

Lemma 2.1. Assume that ( )tA  is decomposed as 

( ) ( ) ( ) ,CtbEtatA +=   (2.1) 

where ( ) ( )tbta ,  are continuous real functions, E is the identity matrix, 

and C is a constant real nn ×  matrix. Then ( )tA  satisfies (1.4). If ( )tA  is 

a 22 ×  matrix function, then (2.1) is a necessary and sufficient condition 
for ( )tA  to satisfy (1.4). 

Remark 2.1. In Lemma 2.1, the expression of 

( ) ( ) ( )CtbEtatA +=  
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is not unique. For example, if we let 

,
0

0
0

11
112221

12

11

11

2221

1211 CEc
ccc

c
c

c
cc
cc

C ′+=







−

+






=






=  

then we can rewrite ( )tA  as 

( ) ( ( ) ( )) ( ) .11 CtbEtbctatA ′++=  

Remark 2.2. If ( )tA  is given by (2.1), then the fundamental matrix 

of ( )xtAx =′  is expressed by 

( ) ( ) ( ) ( ) ,CtEtCtEt eee βαβ+α =  

where ( ) ( )dssat
t
∫=α

0
 and ( ) ( ) .

0
dssbt

t
∫=β  

Assume that the characteristic polynomial of C is given by 

( ) .
1

in
i

r

i
CE λ−λ=−λ ∏

=

 

We decompose CE −λ1  into partial fractions as 

( )
( )

,1

1 in
i

i
r

i

h
CE λ−λ

λ
=

−λ ∑
=

 

where each ( )λih  is at most ( )1−in -degree polynomial of .λ  Multiplying 

both sides of this identity by ( ) ,1
in

i
r
iCE λ−λ=−λ ∏ =

 we have 

( ) ( ) .1
11

jn
j

ij

r

j
i

r

i
h λ−λλ=

≠
==
∏∑  (2.2) 

Define the projection on the generalized eigenspace associated with iλ  as 

( ) ( ) .
1

jn
j

ij

r

j
ii ECChP λ−=

≠
=
∏  (2.3) 
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From (2.2), we have .1 EPi
r
i =∑ =

 Also, since we know that ∏ =
r
i 1  

( ) OEC in
i =λ−  by Hamilton-Cayley theorem, we have ,OPP ji =  for 

.ji ≠  Therefore, we have 

( ) ( ) ( ) ( ( ) )
i

ECEt
r

i
i

Ct
r

i

Ct PePee ii λ−+λβ

=

β

=

β ∑∑ ==
11

 

( ) ( ) ( )
i

ECtEt
r

i
Pee ii λ−ββλ

=
∑=

1
 

( ) ( ) ( ) i
k

i
k

k

t
r

i
PECtke i













λ−β= ∑∑

∞

=

βλ

=
!

1

01
 

( ) ( ) ( ) .!
1

1

01
i

k
i

k
n

k

t
r

i
PECtke

i
i














λ−β= ∑∑

−

=

βλ

=

 

Thus, we have 

( ) ( ) ( ) ( ) ( ) ( ) .!
1

1

01
i

k
i

k
n

k

tt
r

i

CtEt PECtkee
i

i













λ−β= ∑∑

−

=

βλ+α

=

β+α  

Lemma 2.2. Assume that ( )tA  is given by (2.1). Then, the 

fundamental matrix of ( )xtAx =′  is expressed by 

( ) ( ) ( ) ( ) ( ) ( ) ,!
1

1

01
i

k
i

k
n

k

tt
r

i

CtEt PECtkee
i

i













λ−β= ∑∑

−

=

βλ+α

=

β+α  

where ( ) ( ) ( ) ( ) ,,
00

dssbtdssat
tt
∫∫ =β=α  each iλ  is the eigenvalue with 

the multiplicity in  of C, and each iP  is defined by (2.3). In particular, if 

( )tA  is a 22 ×  matrix function, then the fundamental matrix of 

( )xtAx =′  where ( )tA  is given by (2.1) is expressed in the following. 
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  (i) If C has real eigenvalues 1λ  and ( ),212 λ≠λλ  then we have 

( ) ( )
( ) ( )

( )
( ) ( )

( ).1
12

2
21

21
ECeECee

tttt
CtEt λ−

λ−λ
+λ−

λ−λ
=

βλ+αβλ+α
β+α  

 (ii) If C has real double eigenvalues ,λ  then we have 

( ) ( ) ( ) ( ) ( ) ( )( ).ECtEee ttCtEt λ−β+= λβ+αβ+α  

(iii) If C has complex conjugate eigenvalues νi+µ=λ  and 

,νi−µ=λ  then we have 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) .sincos 





 µ−

β
+β= βµ+αβ+α ECtEtee ttCtEt

ν
νν  

Example 2.1. Consider the linear system 

.
sin3cos

cossin3
x

ttt
ttt

x 







+−
+−

=′  (2.4) 

We decompose the coefficient matrix of (2.4) as 

( ) ( ) ( ) .
01
10

where,cossin3 





=++−= CCtEtttA  

Let 

( ) ( ) ,sincos3sin3
0

ttttdssst
t

+−−=+−=α ∫  

( ) .sincos
0

tdsst
t

==β ∫  

Since the eigenvalues of C are ,1±=λ  Lemma 2.2 implies that the 
fundamental matrix (2.4) is 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )ECeECee
tttt

CtEt −
−−

++
−−

=
β−αβ+α

β+α
1111  

( ) ( ) ( ) ( )








−
−

−





=

β−αβ+α

11
11

211
11

2
tttt ee  
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( ) ( ) ( ) ( )

( ) ( ) 








++−
+−+= ββ

βββ−α

tt

tttt

ee
eee

22

22

11
11

2  

( )
.

11
11

2 sin2sin2

sin2sin2cos3










++−
+−+=

+−

tt

tttt

ee
eee  

Theorem 2.1. Consider the linear system 

( ) ( )( ) ,xtBtAx +=′  (2.5) 

where ( )tA  is a continuous nn ×  matrix function, and ( )tB  is a 

continuously differentiable nn ×  matrix function. If ( )tB  satisfies 

( ) ( ) ( ) ( ) ( ),tAtBtBtAtB −=′  

then (2.5) is converted into 

( ) ,0 yBy =′  

under the transformation ( )ytx Φ=  where ( )tΦ  is the fundamental 

matrix of ( )xtAx =′  satisfying ( ) .0 E=Φ  

Proof. By the transformation ( ) ,ytx Φ=  the left hand side of (2.5) is 
given by 

 ( )( ) ( ) ( ) ( ) .ytyttAytx ′Φ+Φ=′Φ=′  

Also, the right hand side of (2.5) is given by 

( ) ( )( ) ( ) ( )( ) ( ) .yttBtAxtBtA Φ+=+  

Therefore (2.5) is converted into 

( ) ( ) ( ) .1 yttBty ΦΦ=′ −  

Since ( ( ) ) ( ) ( ),11 tAtt −− Φ−=′Φ  we have 

( ( ) ( ) ( ))′ΦΦ − ttBt 1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttAtBtttBtttBtAt ΦΦ+Φ′Φ+ΦΦ−= −−− 111  
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( ) ( ( ) ( ) ( ) ( ) ( )) ( )ttAtBtBtBtAt Φ+′+−Φ= −1  

.O=  

Thus, we have that ( ) ( ) ( )ttBt ΦΦ −1  is a constant matrix or 

( ) ( ) ( )ttBt ΦΦ −1  ( ).0B≡  Therefore (2.5) is converted into 

( ) .0 yBy =′  

This completes the proof.   

Example 2.2. Consider the linear system 

.
1

1
2

2
x

e
ex t

t










−−
=′ −  (2.6) 

We decompose (2.6) as 

( )( ) ,xtBAx +=′  

where 

( ) .
0

0,
10
01

2

2










−
=








−
= − t

t

e
etBA  

Then, the fundamental matrix of Axx =′  is given by 

( ) .
0

0








==Φ −t

t
At

e
eet  

Also, we have 

( ) ( ) ( ).
02

20
0

0
0

0
2

2

2

2

2

2
tB

e
e

e
e

e
eAtBtBA t

t

t

t

t

t
′=








=









−
−−








=− −−−  

Therefore, by the transformation ( ) ,ytx Φ=  (2.6) is converted into 

( ) ( ) .
01
100where,0 






−

==′ ByBy  
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Since the eigenvalues of ( )0B  are ,i±=λ  we have 

( ) ( ) ( ) ( ) .
cossin
sincos

0sincos0 






−

=+=
tt
tt

BtEte tB  

Hence, we have the fundamental matrix of (2.6) as 

( ) ( ) .
cossin

sincos
cossin
sincos

0
00










−
=







−








=Φ −−− tete

tete
tt
tt

e
eet tt

tt

t

t
tB  

  

Example 2.3. Consider the linear system 

.
32

24
33

33
2

2

x
te

etx
tt

tt















−−

−+=′
−−

+
 (2.7) 

We decompose (2.7) by 

( ) ( )( ) ,xtBtAx +=′  

where 

( ) ( ) .
1

1,
220

014
33

33
2

2















−

−=







−−
+

=
−−

+

tt

tt

e
etB

t
t

tA  

Then, the fundamental matrix of ( )xtAx =′  is given by 

( ) .
0

0
2

2
2

2














=Φ

−−

+

tt

tt

e
et  

Also, we have 

( ) ( ) ( ) ( )tAtBtBtA −  

( )
( )

( )
( ) 














++

++−













++−

+−+=
−−

+

−−

+

2214
2214

2222
1414

33

33

33

33
2

2

2

2

tet
ett

tet
ett

tt

tt

tt

tt
 

( )
( ) ( ).

0
36

36
0 33

33

2
2 tBet

et
tt

tt ′=



+−



+−

=
+

−−  
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Therefore, by the transformation ( ) ,ytx Φ=  (2.7) is converted into 

( ) ( ) .
11
110where,0 







−
−

==′ ByBy  

Since the eigenvalues of ( )0B  is ,0=λ  we have 

( ) ( ) .
1

1
00 








−
−+

=+=
tt

tt
tBEe tB  

Hence, we have the fundamental matrix of (2.7) as 

( ) ( ) ( )
( )

.
1

1
1

1

0
0

22

22

2

20
22

22

2

2















−

−+=







−
−+














=Φ

−−−−

++

−−

+

tttt

tttt

tt

tttB

ette
teet

tt
tt

e
eet  

  

Theorem 2.2. Consider the linear system 

( ) ( ) ( ) ( )( ) ,xtCtbEtatAx ++=′  (2.8) 

where ( )tA  is a continuous nn ×  matrix function, ( ) ( )tbta ,  are 

continuous functions, and ( )tC  is a continuously differentiable nn ×  

matrix function. If ( )tC  satisfies 

( ) ( ) ( ) ( ) ( ),tAtCtCtAtC −=′  

then (2.8) is converted into 

( ) ( ) ( )( ) ,0 yCtbEtay +=′  

under the transformation ( )ytx Φ=  where ( )tΦ  is the fundamental 

matrix of ( )xtAx =′  satisfying ( ) .0 E=Φ  

Proof. By the transformation ( ) ,ytx Φ=  the left hand side of (2.8) is 
given by 

( )( ) ( ) ( ) ( ) .ytyttAytx ′Φ+Φ=′Φ=′  

Also, the right hand side of (2.8) is given by 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) .yttCtbEtatAxtCtbEtatA Φ++=++  
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Therefore (2.8) is converted into 

( ( ) ( ) ( ) ( ) ( )) .1 yttCttbEtay ΦΦ+=′ −  

Since ( ( ) ) ( ) ( ),11 tAtt −− Φ−=′Φ  we have 

( ( ) ( ) ( ))′ΦΦ − ttCt 1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttAtCtttCtttctAt ΦΦ+Φ′Φ+ΦΦ−= −−− 111  

( ) ( ( ) ( ) ( ) ( ) ( )) ( ) .1 OttAtCtCtCtAt =Φ+′+−Φ= −  

Then, we have that ( ) ( ) ( ) ( ).01 CttCt ≡ΦΦ −  Hence, (2.8) is converted into 

( ) ( ) ( )( ) .0 yCtbEtay +=′  

This completes the proof.   

Example 2.4. Consider the linear system 

.
2cos22sin21
2sin212cos2

2

2
x

ttttt
tttttx 








−+
+−+=′  (29) 

We decompose (2.9) as 

( ) ( ) ( )( ) ,xtCtbEtaAx ++=′  

where 

( ) ( ) ( ) .
2cos2sin

2sin2cos
and,2,,

01
10 2 








−
===






 −

=
tt

tt
tCttbttaA  

Then, the fundamental matrix of Axx =′  is given by 

( ) .
cossin
sincos







 −

==Φ
tt
tt

et At  

Also, we have 

( ) ( ) 







−−
−

−





−=−

tt
tt

tt
tt

AtCtAC
2sin2cos
2cos2sin

2sin2cos
2cos2sin  

( ).
2sin22cos2
2cos22sin2

tC
tt
tt

′=





−=  
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Therefore, by the transformation ( ) ,ytx Φ=  (2.9) is converted into 

( ) ( ) ( )( ) ( ) .
10
01

0where,0 







−
=+=′ CyCtbEtay  

Let ( ) ( ) 3
0 3

1 tdssat
t

==α ∫  and ( ) ( ) .2
0

tdssbt
t

==β ∫  Since the 

eigenvalues of ( )0C  are ,1±=λ  Lemma 2.2 implies that 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )ECeECee ttttCtEt −−+= β−αβ+αβ+α 02
102

10  

( ) ( )

( ) ( ) .
0

0
0

0
23

3
1

23
3
1
















=








=

−

+

β−α

β+α

tt

tt

tt

tt

e

e
e

e  

Therefore, the fundamental matrix of (2.9) is given by 

( ) ( ) ( ) ( )





















 −

=Φ
−

+
β+α

23
3
1

23
3
1

0

0
cossin
sincos0

tt

tt
CtEt

e

e
tt
tt

et  

.
cossin

sincos
23

3
123

3
1

23
3
123

3
1
















−=

−+

−+

tete

tete
tttt

tttt
 

  

Example 2.5. Consider the linear system 

.
cossincos1

sincoscossincos
1sincoscos

x
tttttt

ttttttttt
tttttt

x
















−−−
−+
++

=′  2.10) 

We decompose (2.10) as 

( ) ( ) ( )( ) ,xtCtbEtaAx ++=′  

where 

( ) ( ) and,,cos,
001
000
100

ttbttaA ==
















−
=  
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( ) .
0sincos1

sincos0sincos
1sincos0

















−−
−+

+
=

tt
tttt

tt
tC  

Then, the fundamental matrix of Axx =′  is given by 

( ) .
cos0sin

010
sin0cos

















−
==Φ

tt

tt
et At  

Also, we have 

( ) ( )
















−
+−

−
−

















−−−

−−
=−

100
sincos0cossin

001

1sincos0
000
0sincos1

tttt
tt

tt
AtCtAC  

( ).
0sincos0

sincos0sincos
0sincos0

tC
tt

tttt
tt

′=
















−−
−−−

−
=  

Therefore, by the transformation ( ) ,ytx Φ=  (2.10) is converted into 

( ) ( ) ( )( ) ( ) .
011
101
110

0where,0
















−
=+=′ CyCtbEtay  

The characteristic polynomial of ( )0C  is given by ( ) ( )10 −λλ=−λ CE  
( ).1+λ  Thus, the eigenvalues of ( )0C  are .1,0 ±=λ  Since 

( ) ( ) ( ) ,12
1

12
11

0
1

+λ
+

−λ
+

λ
−=

−λ CE  

we define the projections on the eigenspaces as follows: 

( )( ) ( )( ) ,
111
111
111

001
















−
−−
−−

=+−−= ECECP  

( ) ( )( ) ,
000
110
110

002
1

2















=+= ECCP  
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( ) ( )( ) .
011
011
000

002
1

3
















−
−=−= ECCP  

Let ( ) ( ) tdssat
t

sin
0

==α ∫  and ( ) ( ) .2
1 2

0
tdssbt

t
==β ∫  Then, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
321

0 PePePee tttttCtEt β−αβ+ααβ+α ++=  

.

111

111

111

2
2
12

2
1

2
2
12

2
12

2
12

2
1

2
2
12

2
1

sin























−+−

+−++−−

+−+−

=
−−

−−

tt

tttt

tt

t

ee

eeee

ee

e  

Consequently, we have the fundamental matrix of (2.10) as 

( ) ( ) ( ) ( )0CtEtet β+αΦ  

.

111

111

111

cos0sin
010

sin0cos

2
2
12

2
1

2
2
12

2
12

2
12

2
1

2
2
12

2
1

sin























−+−

+−++−−

+−+−

















−
=

−−

−−

tt

tttt

tt

t

ee

eeee

ee

tt

tt
e  

References 

 [1] R. Bellman, Stability Theory of Differential Equations, Dover Publications, 2008. 

 [2] J. Cronin, Differential Equations: Introduction and Qualitative Theory, Second ed., 
Marcel Dekker, 1994. 

 [3] Y. Okuno and M. Yamamoto, On the relations between the stability of linear  
systems and the characteristic roots of the coefficient matrix, Proc. Japan Acad. Ser. 
A 53(1) (1977), 21-24. 

 [4] M. Yamamoto, On the homogeneous linear systems of differential equations with 
variable coefficients, Proc. Japan Acad. Ser. A 53(1) (1977), 17-20. 

 [5] V. I. Zubov, Mathematical Methods for the Study of Automatic Control Systems, 
Pergamon Press, 1962. 

g 


