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Abstract

We give the conditions that the linear system x' = (A() + B(¢))x is converted into

another solvable linear system under the transformation based on the
fundamental matrix. Using our results, we show several examples of linear
systems which we can obtain the fundamental matrix.

1. Introduction

Consider the linear system
x' = (A@) + B(t))x, (1.1)

where A(t) and B(t) are continuous real n x n matrix functions. If both
A(t) and B(t) are constant matrices A and B respectively, then the

(A+B)

fundamental matrix of (1.1) is given by e . In particular, if A and B

are commutative, then we have o ATBY _ oAt Bt g only A(t) is a
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constant matrix A, and A and B(f{) are commutative, then the

fundamental matrix of (1.1) is given by e“'¥(t) where W¥(t) is a
fundamental matrix of x' = B(¢)x. However, if A and B(t) are not always

assumed to be commutative, it is generally difficult to obtain the

fundamental matrix of (1.1).

By using the transformation x = eSty, Yamamoto [4] gives the

condition that
x' = Alt)x (1.2)
is converted into another linear system y’ = B(t)y as follows.

Lemma 1.1. There exists a constant matrix S and a continuously
differentiable function B(t) such that (1.2) is converted into y' = B(t)y

under the transformation x = ey, if and only if A(t) satisfies that

{A'(t) = SA(t) - At)S + eS‘B/(t)e™, .9

A(0) = S + B(0).
From this result, we can see that, if A(¢) satisfies (1.3) for some S and

B(t), then the fundamental matrix of (1.2) is given by eSt‘I’(t) where
¥(¢) is the fundamental matrix of y' = B(t)y. Thus, we may take it that
A(t) is decomposed by S and B(t) in a sense, and the fundamental

matrix of (1.2) is expressed by the product of ¢St and ¥(¢) which are the
fundamental matrices of x' = Sx and y' = B(t)y respectively. Here, we
note that S and B(f) are not always assumed to be commutative.
Unfortunately, it is not easy to find S and B(t) for given A(t). Moreover,
even if we find such S and B(t), we need the fundamental matrix of
y' = B(t)y in order to obtain the fundamental matrix of (1.2). Thus,
except for the case that B(f) is a constant matrix, we can hardly apply

Lemma 1.1 to concrete examples to obtain the fundamental matrix of
(1.2).
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In this paper, using the above idea, we decompose the linear system
as (1.1), and intend to convert it into another solvable linear system by

using the transformation x = ®(¢)y where ®(¢) is the fundamental
matrix of x' = A(t)x. If we can obtain the fundamental matrix ¥(¢) of

the converted linear system, then the fundamental matrix of (1.1) is
expressed by ®(¢)¥(t). As a sufficient condition to obtain the

fundamental matrix of the linear system, we use the following well-

known result.

Lemma 1.2. Assume that A(t) satisfies that
t t
A(t)[ j Als) dsJ - U Als) ds] A). (1.4)
0 0

t
A(s)ds
Then, the fundamental matrix of x' = A(t)x is given by eIO

In the following, we prepare a concrete matrix form of A(t) which

satisfies (1.4), and gives the explicit expression of the fundamental
matrix. And then, we derive the conditions that (1.1) is converted into the
linear system, which satisfies (1.4). We also apply our results to several

examples of linear systems.
2. Main Results

Lemma 2.1. Assume that A(t) is decomposed as
At) = a(t)E +b(t)C, 2.1)

where alt), b(t) are continuous real functions, E is the identity matrix,
and C is a constant real n x n matrix. Then A(t) satisfies (1.4). If A(t) is
a 2 x 2 matrix function, then (2.1) is a necessary and sufficient condition

for A(t) to satisfy (1.4).

Remark 2.1. In Lemma 2.1, the expression of

A(t) = alt)E + b(t)C
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is not unique. For example, if we let

c c c 0 0 c
C:(H 12)2(11 JJF[ 12 j:an+C’,
Co1 C22 0 e Co1 €99 —C11

then we can rewrite A(f) as
A(t) = (a(t)+c11b())E + b(2)C".
Remark 2.2. If A(¢) is given by (2.1), then the fundamental matrix
of x' = A(t)x is expressed by

ea(t)E+[3(t)C _ ea(t)Ee[?:(t)C’
where a(t) = Iéa(s) ds and B(t) = Iéb(s) ds.

Assume that the characteristic polynomial of C is given by

r

|LE - C| = H(x_xi)ni.
i=1
We decompose 1/|LE — C| into partial fractions as

1 :Zr: hi (%)
[ME-Cl -y

where each h;(X) is at most (n; —1)-degree polynomial of A. Multiplying

both sides of this identity by |AE — C| = H:zl(k - %; )", we have

1= Z;hi(x)H(x-xj)”f. (2.2)
1= Jj=
J#i

Define the projection on the generalized eigenspace associated with A; as

P = hi(C)H(C ~AEYY. (2.3)
j=1

J#i
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From (2.2), we have Z:zlPi = E. Also, since we know that Hir=1

(C-%E)" = O by Hamilton-Cayley theorem, we have P,P; = O, for

i # j. Therefore, we have

SOC _ Zr:eﬁ(t)c p - Z'":es(t)miEﬂc—xiE))Pi

i=1 i=1

r

= Y HHOEHOCHE)p,
=1

r

DN DY TONCE m-E)kJPi
k=0

i=1
r

n;—1
= Zekiﬁ(t) Z % B(t)k(C _ XLE)kJPL
k=0

i=1

Thus, we have

=1

r n; -1
o HDE+BE)C _ Zea(t)+xil3(t)[z % B (C - ME)kJPi-
k=0

Lemma 2.2. Assume that A(t) is given by (2.1). Then, the

fundamental matrix of x' = A(t)x is expressed by

r

n;—1

. 1 3

e OEC Zea“)%ﬂ“(zyso)’”(c - xiE)kJP,-,
i=1 k=0 "

where alt) = Iéa(s) ds, B(t) = f;b(s) ds, each \; is the eigenvalue with

the multiplicity n; of C, and each P; is defined by (2.3). In particular, if
Alt) is a 2x2 matrix function, then the fundamental matrix of

x' = A(t)x where A(t) is given by (2.1) is expressed in the following.
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() If C has real eigenvalues A; and Ly (Ay # Ly ), then we have

¢ et0#B0) (o(0)+2B(0)

a(t)E+B(¢) e T (c_ e =
e }\‘1 — }\’2 (C }\.2E) + }\‘2 — }\’1

C - ME).

(11) If C has real double eigenvalues A, then we have
CE+B()C _ ea(t)+kﬁ(t)(E +B(t)(C - LE)).

@) If C has complex conjugate eigenvalues A =pu+iv and

A = u —iv, then we have
SHDESBOC _ ea(t)wﬁ(t)(cos(vﬁ(t))E N M (C-n E)]-
Example 2.1. Consider the linear system

(2.4)

, (—8+tsint cost j
x' = .

cost - 3+tsint

We decompose the coefficient matrix of (2.4) as

01
Alt) = (-3 +tsint)E + (cost)C, where C = (1 O]'

Let

¢
oc(t):J' (-3 +ssins)ds = -3t —tcost + sint,
0

t
B(¢) = J cossds = sint.
0

Since the eigenvalues of C are A = 1, Lemma 2.2 implies that the

fundamental matrix (2.4) is

S4B L0
= m C+ + ﬁ (C - E)

UDE+B()C

O+BE) 1 1) a®)-BE) (—1 1
2 (1 J_ 2 [1 —J
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OB (1, 2O g, 20
B 2 1+ eZB(t) 1+ e2ﬁ(t)

et(3+cost)( 14 2sint . ,2sint J

2 2sint 2sint

-1+e l1+e

Theorem 2.1. Consider the linear system
x' = (A(t) + B(¢))x, (2.5)

where A(t) is a continuous nxn matrix function, and B(t) is a

continuously differentiable n x n matrix function. If B(t) satisfies
B'(t) = A(t)B(t) - B(t) A(),
then (2.5) is converted into
y' = B(0)y,

under the transformation x = ®(t)y where ®(t) is the fundamental

matrix of x' = A(t)x satisfying ®(0) = E.
Proof. By the transformation x = ®(t)y, the left hand side of (2.5) is
given by
x = (@(0)) = ADO Oy + @)y
Also, the right hand side of (2.5) is given by
(A(t) + B(t)x = (A(t) + B@))®(t)y.
Therefore (2.5) is converted into

y = o) BE)® ().

Since (d(t)") = ~®(t) 1 A(t), we have
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= © () (- A@)B@) + B'(1) + BO)A®) @ ()
=0.
Thus, we have that ®(¢)'B(t)®(t) is a constant matrix or
®(t) 1 B(t)®(t) = B(0). Therefore (2.5) is converted into
y' = B(0)y.
This completes the proof. O

Example 2.2. Consider the linear system

2t
x’:( 1_2t e1]x' (2.6)

We decompose (2.6) as
x' = (A + B(t))x,

S

Then, the fundamental matrix of x' = Ax is given by

o) = eA = [et 0 J

where

0 e

Also, we have

t t 2t
AB(f) - B()A = (e(_)% ej J—( O_2t‘e§ J _ (23_2t 2‘?0 ] _ B).

—e

Therefore, by the transformation x = ®(t)y, (2.6) is converted into

Vv = BO)y, where B(o):(?l (1)]
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Since the eigenvalues of B(0) are A = +i, we have

eBOY _ (cost)E + (sin £)B(0) = (c"” sin tj.

—sint cost

Hence, we have the fundamental matrix of (2.6) as
t cost sint t g
q)(t)eB(O)t _|e Oz ( . j _|e ios't e tsmt ‘
0 e *)\—sint cost —e “sint e " cost

Example 2.3. Consider the linear system

3t2 43¢
=] 22 € x. 2.7
e—3t -3t —9¢ -3

We decompose (2.7) by

where

A(t):(4t+1 0 j B(t):( _1 —e3t2+3t}

2
0 -2t -2 e 373t g

Then, the fundamental matrix of x’ = A(t)x is given by

22 +¢
0
o) =|° 2y |
0 et

Also, we have

A(t)B(t) - B(t)A(t)

2 2
~ 4t +1 —(4t +1)e3 3| 4t+1 (2t +2)ed ¥
- 2 2

—(2t+2)e 3 242 (4t +1)e™ 33 9t 42

0 3 3t2 43t ,
) (—(Gt +3)e 0 o ?Z))e ] =B
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Therefore, by the transformation x = ®(¢)y, (2.7) is converted into

V' = BO)y, where B(O):G jj

Since the eigenvalues of B(0) is A = 0, we have

eBO _ g 1 1B(0) = (1 o j
t 1-t

Hence, we have the fundamental matrix of (2.7) as

(I)(t)eB(O)t _ {62t2+t 0 J[l +t —t ] _ {(1 " t)6212+t _te2t2+t ]
0 e

12— t 11—t to—t’ 2 (1- t)e_tz =
O
Theorem 2.2. Consider the linear system
x' = (A(t) + a(t)E + b(t)C(t))x, 2.8)

where A(t) is a continuous nxn matrix function, alt), b(t) are
continuous functions, and C(t) is a continuously differentiable nxn

matrix function. If C(t) satisfies
C't) = A(R)C @) - C()AR),
then (2.8) is converted into
y' = (alt)E +b(t)C(0))y,

under the transformation x = ®(t)y where ®(t) is the fundamental
matrix of x' = A(t)x satisfying ®(0) = E.

Proof. By the transformation x = ®(t)y, the left hand side of (2.8) is
given by

® = (@(1)) = AQ®Qy + ® Q).
Also, the right hand side of (2.8) is given by
(At)+ alt)E +b(t)C(t))x = (Alt) + a(t)E + b(t)C(t)D(t)y.
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Therefore (2.8) is converted into
y = (a)E +b)@ ()" Ct)D (1)) .

Since (0 (t)') = @ (t) " A(t), we have
(@@ ceo @)
=-0(t) AR () + @) CE)D () + D) CHAR) ()
= o) (- AB)C(@) + C'(t) + CRAR) D(¢) = O.
Then, we have that ®(¢)"1C(t)®(t) = C(0). Hence, (2.8) is converted into

y' = (at)E + b(t)C(0))y.
This completes the proof. O

Example 2.4. Consider the linear system

2 .
X = [t + 2tcos2t -1+ 2tsin 2th. (29)

1+2sin2t t2 —2¢cos 2t
We decompose (2.9) as
x'=(A+alt)E +b(t)C())x,

where

1 O sin 2t —cos 2t

A (O ‘1} alt) = £2, b(t) = 2, and C(t):(

cos 2t sin 2t J

Then, the fundamental matrix of x' = Ax is given by

cost -sint
D) = et =| .
sint cost

Also, we have

AC() - Ct)A = (—sin 2t cos 2tj ~ (sin 2t —cos 2tj

cos 2t sin 2t —cos 2t —sin 2t

B [—2 sin 2t 2 cos 2tj

. =C'(t).
2cos2t 2sin2t
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Therefore, by the transformation x = ®(t)y, (2.9) is converted into

y' = (a(t)E + b(t)C(0))y, where C(0)= ((1) _(D'

Let af(t) = j;a(s) ds = %t?’ and B(t) = J;b(s) ds = t>. Since the

eigenvalues of C(0) are A = +1, Lemma 2.2 implies that
e OE+B()C(0) _ %e“(t)w(t)(C(O) +E)- %ea(t)—ﬁ(t)(c(o) _E)

i [ea(z)wa) 0 j [

0 a0 132

=t7—t
e3

Therefore, the fundamental matrix of (2.9) is given by

. 143142
q)(t)e“(t)E+ﬁ(t)C(0) _ (Cost —sin tj e3 0

: 1,3 ,2
sint cost 0 57—t
148142 L2
_|ed cost —e? sin ¢
143442 143 42 '
es sint e3 cost
O
Example 2.5. Consider the linear system
cost tcost +tsint t+1
x'=|tcost+tsint cost tcost —tsint |x. 2.10)
-t -1 tcost —tsint cost

We decompose (2.10) as
x'=(A+alt)E +b(t)C(@))x,

where

S o
o O O

1
0 |, alt)=-cost, b(t)=t and
0

|
—
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0 cost + sint 1
C(t) = | cost + sint 0 cost —sint |.
-1 cost —sin ¢ 0

Then, the fundamental matrix of x' = Ax is given by

cost 0 sint
dt)=e = 0 1 0
—sint 0 cost

Also, we have

-1 cost —sint 0 -1 0 0
AC(t)-C{t)A=| 0 0 0 |—|sint —cost 0 cost +sint
0 —cost —sin ¢ —1} { 0 0 -1
0 cost—sin ¢ 0
= | cost—sin ¢ 0 —cost—sint | = C'(t).
0 —cost—sin ¢ 0

Therefore, by the transformation x = ®(¢)y, (2.10) is converted into
0
y' = (al)E + b(t)C(0))y, where C(0)=| 1

11
01
10

—

The characteristic polynomial of C(0) is given by |LE — C(0)| = A( —1)
(A +1). Thus, the eigenvalues of C(0) are A = 0, +1. Since

1 1 1 1

AE-C)] % 20-1) 2n+1)’

we define the projections on the eigenspaces as follows:

1 -1 -1
P = —(C(0)- E)(CO)+ E)=|1 -1 -1|,
-1 1 1

Py = 2C(0)(C0)+ E) =

S o o
S =

1
1]
0
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0 0O
P, :%C(O)(C(O)—E): 110
1 10
Let af(t) = Iéa(s)ds =sint and B(t) = Iéb(s) ds = %t% Then, we have

(HOEBOCO) _ pal)p | (a04B(0p, 4 (ol-BO)p,

1,2 1,2
L L
1 -1+e2 -1+e2
. 12 12 12 1,2
="M 1-e 2 “1+e 2 +e2 1+ e?
12 1,2
-l+e 2 1-e 2 1

Consequently, we have the fundamental matrix of (2.10) as

® (t)efx(t)E+B(t)C(0)
1,2 1,2
cost 0 sint 1 —1+e? —l+e?
sint -1 2 1 12
=e 0 1 0 1—e 2 -14+e2 +e 2 —1+e2
_si -1.2 -12
sinz 0 cost )| ;. ,73 1—e 2 1
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